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ABSTRACT: Recent electronic applications require an
efficient computing system that can perform data processing
with limited energy consumption. Inspired by the massive
parallelism of the human brain, a neuromorphic system
(hardware neural network) may provide an efficient
computing unit to perform such tasks as classification and
recognition. However, the implementation of synaptic
devices (i.e., the essential building blocks for emulating
the functions of biological synapses) remains challenging
due to their uncontrollable weight update protocol and
corresponding uncertain effects on the operation of the system, which can lead to a bottleneck in the continuous design
and optimization. Here, we demonstrate a synaptic transistor based on highly purified, preseparated 99% semiconducting
carbon nanotubes, which can provide adjustable weight update linearity and variation margin. The pattern recognition
efficacy is validated using a device-to-system level simulation framework. The enlarged margin rather than the linear weight
update can enhance the fault tolerance of the recognition system, which improves the recognition accuracy.
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Neuromorphic engineering is the design and con-
struction of systems that replicate the capabilities of
biological systems and their advantages, such as

robustness and power efficiency, by mimicking both the
functional and structural characteristics of the biological
systems.1 Although relatively little is known about the principle
of information processing in the brain, it is certain that
biological neural systems for sensory perception (such as the
visual system shown in Figure 1a) are more energy efficient
than the common von Neumann architecture of computers.2

Therefore, inspired by the structure of biological brains,3

neuromorphic systems have been adopted to develop
innovative artificial neural network computing architecture
that is adaptive, massively parallel, and fault-tolerant.4

A unique feature of neuromorphic systems is that in a
massive parallel network, the processing and storing of
information can be performed simultaneously by modulating
the connection strength of synapses, which is referred to as the
synaptic weight.5 Spikes from the presynaptic neurons can be
transmitted through the synapses and generate a membrane
potential and thus presynaptic spikes based on the relative
strengths of the synapses (i.e., the synaptic weights). These

synaptic weights can be modulated by either potentiating or
depressing spikes from pre- and postsynaptic neurons following
appropriate learning rules, such as spike-timing-dependent
plasticity (STDP).6 Therefore, a key element in the neuro-
morphic system is the implementation of an ideal synaptic
device that can emulate the functionality of biological synapses.
Unfortunately, the current lack of a highly scalable and low-
power synaptic device is still a major obstacle to realize
neuromorphic systems.7

To date, several efforts have been made to implement an
appropriate synaptic device by exploiting complementary
metal-oxide-semiconductor (CMOS) technology and emerging
nanoelectronic devices. Although the capability of CMOS
circuits is sufficient to capture synaptic functionalities,8−10 the
chip area and power consumption required would be
prohibitively large for large-scale integration. To overcome
the challenges of CMOS-based approaches,11 attention has
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recently turned to the attractive characteristics of emerging
devices. One of the most promising candidates is two-terminal
resistive switching devices (known as memristors). Memristors
are nonvolatile analog memory.12 With memristors, analog
conductance states can be maintained over the long-term, and
only a minuscule amount of energy is required to modulate
distinct states. Synaptic plasticity (e.g., STDP, spike-rate-
dependent plasticity or paired pulse facilitation) has been
demonstrated using memristors in a number of studies,13−18

indicating the possibility of establishing next-generation
computation paradigms.
However, the sustainability of memristors is still in doubt,

particularly with regard to the uncontrollable weight update
protocol that is common to all memristor technologies. The
specific physical mechanism of the conductance change in most
prospective metal-oxide-based memristors, which uses an
atomic-scale modulation of oxygen vacancies based on an
electro/thermodynamic feedback process,19 is responsible for
the unwanted abrupt conductance change (i.e., the nonlinear
response of the resistance to consecutive potentiation or
depression spikes) and the limited conductance variation
margin.20 Moreover, the effect of nonlinearity and the limited
variation margin to the neuromorphic system operations, such
as pattern recognition tasks, has not been analyzed
quantitatively,21−23 which leads to a bottleneck in the
continuous design and optimization of synaptic devices.
This study breaks through these issues by demonstrating a

synaptic device based on a carbon nanotube (CNT) transistor
in which the randomly networked CNTs produced from highly
purified, preseparated 99% semiconducting CNT solutions
were used as channels in the transistor. We intentionally
embedded a thin Au layer as a floating gate (i.e., charge storage
layer) inside a gate dielectric to control both the linearity and
variation margin of the weight update. In addition, we
demonstrate a device- to system-level simulation framework
based on a simplified STDP scheme that has the potential for
unsupervised online learning and consequent pattern recog-

nition ability in a synaptic transistor array. Therefore, it is
expected that our results can provide guidelines for the
quantitative design and optimization of synaptic devices and, in
particular, the required linearity and variation margin of the
weight update to improve the recognition accuracy of the
neuromorphic system. In addition, we demonstrate the CNT
synaptic transistor on a paper substrate that has great potential
to meet the demand for a popular, flexible, foldable, low-cost,
mass-producible, disposable, retrievable, and easily processable
neuromorphic system.

RESULTS AND DISCUSSION

Transistors based on CNTs have been investigated as synaptic
devices in previous studies.24−27 However, those studies only
concentrated on the characterization of a single synaptic device
and therefore could not effectively provide guidelines for
system-level design, such as how to implement the functional
neuromorphic system (e.g., the implementation of a pattern
recognition system with the proper learning algorithm).
Similarly, in our previous work,28 a synaptic transistor based
on a random matrix of single-walled CNTs was demonstrated
to reproduce synaptic functions. Preseparated semiconducting
CNTs enabled high uniformity and sustainability of the
synaptic transistors with a reliable analog modulation of
channel conductance. However, the updates of the synaptic
weight (i.e., change in the channel conductance in the devices)
were shown to be highly nonlinear for both potentiation and
depression; consequently, the weight change was prohibitively
large during the first few potentiation/depression pulses and
became saturated as the number of applied pulses increased.
Moreover, the variation margin of the weight was only a factor
of 2, which limits further improvement of the pattern
recognition accuracy.28

To alleviate these issues, a randomly networked highly
purified, preseparated 99% semiconducting CNTs were utilized
as a channel in the CNT synaptic transistor, and a thin Au layer

Figure 1. (a) Processing of visual input received through the eye’s retina is performed in the so-called visual cortex. The genetic background of
an individual’s neuronal development and the activity-driven learning process connects neurons in this part of the brain with each other by
means of synapses and, in so doing, forms an energy efficient neural network. (b) Schematic of the demonstrated flexible synaptic transistors
based on a random matrix of semiconducting CNTs. (c) Microscopy (left) and AFM (right) images of the fabricated CNT synaptic transistors
and a random matrix of CNTs, respectively. (d) Image of the fabricated flexible CNT synaptic transistors being transferred onto the paper
substrate (photo paper, averaged RMS of 22.5 nm).
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was embedded as a floating gate in this work, as shown in
Figure 1b,c. In this structure, the channel conductance can be
modulated according to the charges stored at the thin Au
floating gate, enabling the variation margin to be enlarged due
to the additional charge storage node. In particular, the amount
of charge at the floating gate can be adjusted more accurately by
designing the amplitude and duration time of the gate voltage
pulse, which enables the weight update linearity and variation
margin to be controlled as desired. Additionally, a CNT is
highly suitable for flexible electronic materials because of its
high bendability and chemical stability, which originates from
the excellent material properties.29,30 Flexible devices are
becoming increasingly significant in a wide variety of novel
applications that enable integration with soft, curvilinear, and
even time-variant substrates. We believe that a computing
system with high flexibility could be an essential part of flexible
electronics for data processing. Therefore, the CNT synaptic
transistors proposed in this work were fabricated on a paper
substrate that offers many advantages, including flexibility,
inexpensiveness, lightweight, disposability, and recyclability
(Figure 1d), as a proof-of-concept for the implementation of
a flexible paper neuromorphic system (the detailed fabrication
process and device performance are described in the Methods
section and Supporting Information Note 1, respectively).
Figure 2a shows a neural network architecture for our

conceived pattern recognition system. With the crossbar layout,
the system consists of an input layer followed by an output
layer. The pixels in the image housing the definite patterns to
be recognized constitute the input layer. Each input neuron is
connected with one pixel of the image; a total of 28 × 28 input
neurons emit presynaptic spikes (Vpre), wherein the timing of
the presynaptic spikes represents the analog information on the
pixel intensities (the detail timing information on the
presynaptic spike will be discussed later). Subsequently,
presynaptic spikes from the input neurons can trigger multiple

CNT synaptic transistors simultaneously, and postsynaptic
currents (Ipost) determined by the channel conductance of each
CNT synaptic transistor are collected and accumulated at an
output neuron. If the accumulated postsynaptic current level is
greater than a given threshold value (Vth), one output neuron
fires a postsynaptic spike (Vpost); then, the synaptic weight can
be modulated to any analog state according to the correlation
of the pre- and postsynaptic spikes. Additionally, when an
output neuron fires a spike, it sends inhibitory signals to the
other output neurons of the output layer that prevent the other
output neurons from firing during the refractory time. Thus,
lateral inhibition promotes competitive learning and effectively
prevents all of the output neurons from learning similar
patterns, which can afford a winner-takes-all mechanism.31

In terms of circuit-level design, a synaptic function is
emulated by the configuration of three CNT transistors (3T-
Synapse), as shown in Figure 2b, which is the combination of
the inverter (shown in orange) and the synaptic transistor
(shown in yellow). The role of an inverter is a selector; the
spike timing correlation between the pre- and postsynaptic
spikes is converted into various pulse amplitudes through the
selector. This pulse is applied to the gate electrode of the
synaptic transistor (VG) and enables the modulation of the
channel conductance. In addition, as noted above, one output
neuron is connected with 28 × 28 synaptic transistors in
parallel; each synaptic transistor generates the postsynaptic
current (Ipost) based on the channel conductance. The total
sum of the postsynaptic currents is accumulated by a leaky
integrator, and finally, the output neuron generates a
postsynaptic spike through a waveform generator depending
on the comparison between the integrated postsynaptic current
level and Vth. In the proposed neural network, there is no a
sneak path issue in a crossbar array due to the use of three-
terminal synaptic devices. This issue typically limits the
practicability of crossbar architecture32 and requires complex

Figure 2. (a) Hierarchical neural network for pattern recognition of 28 × 28 grayscale images consisting of the input and output layers. The
input neuron is fully connected to the input image pixel in a one-to-one manner. The synaptic devices are located at the junctions between the
input and output neurons. (b) Neuron circuit with each synapse. The neuron circuit is composed of a leaky integrator, comparator, and
waveform generator. The synapse (i.e., 3T-Synapse) consists of three CNT transistors: an initial p-channel CNT transistor, PEI-doped n-type
CNT transistor, and CNT transistor with a thin Au layer as a floating gate. The former two transistors were connected to form the inverter
(orange), and the latter CNT transistor was used to implement the synaptic transistor (yellow). Using the inverter circuit, a postsynaptic spike
(Vpost) was selectively applied to the synaptic transistor, i.e., the gate electrode of the synaptic transistor (VG), only when presynaptic spike
(Vpre) is the input.

ACS Nano Article

DOI: 10.1021/acsnano.6b07894
ACS Nano XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b07894/suppl_file/nn6b07894_si_001.pdf
http://dx.doi.org/10.1021/acsnano.6b07894


solutions, such as complementary resistive switches33 or the use
of nonlinear devices34 in the case of common synaptic devices
based on two-terminal resistive switches.
Subsequently, we implement the simplified STDP

scheme28,35 by designing an appropriate timing correlation
between the pre- and postsynaptic spikes to facilitate the
learning/recognition operation of the proposed neural network
system. By assuming that an image sensor senses the external
pattern, the sensed information is converted into presynaptic
spikes with timings. We define a presynaptic spike timing (tpre)
from 0 to 50 ms for 256-shade greyscale pixel intensities, as
shown in Figure 3a. An early voltage spike timing of 0 ms
correlates to a white pixel, and a late voltage spike timing of 50
ms correlates to a black pixel. The presynaptic spike (Vpre) is a
succession of a negative bias and positive bias; when a negative
bias part of Vpre is applied to the 3T-Synapse, the p-channel
transistor, which is a pull-up network in the inverter, passes the
certain read bias (Vr) to the gate electrode of the synaptic
transistor (VG = Vr), which generates the postsynaptic current
(Ipost). Conversely, when a positive bias part of Vpre is applied,
the n-channel transistor, which is a pull-down in the inverter,
passes Vpost (VG = Vpost), which leads to the channel
conductance modulation at the synaptic transistor. Similarly,
the postsynaptic spike is composed of consecutive negative and
positive biases, as shown in Figure 3b. If the presynaptic spike
arrives at the 3T-Syanpse earlier than the postsynaptic spike
(i.e., tpost − tpre = Δt > 0), then the polarity of VG is negative (=
VLTP), which increases the channel conductance (which is
referred to as a long-term potentiation (LTP)). Conversely,
when the presynaptic spike is later than the postsynaptic spike
(Δt < 0), the channel conductance of the synaptic transistor is
decreased (long-term depression (LTD)) by positive VG (=
VLTD) (the channel conductance change depending on the VG
polarity is discussed in Supporting Information Note 2).
Therefore, the timing correlation between pre- and post-
synaptic spikes is converted into various pulses (Vr, VLTP, or
VLTD) applied to the synaptic transistor; here, VLTP and VLTD
modulate the synaptic weight for the learning of patterns,

whereas Vr only generates the postsynaptic current to
determine the occurrence of firing at the output neuron for
the recognizing of patterns. This simple learning rule, which is
easily implemented with three CNT transistors (3T-Synapse),
is the ground for the weight update protocol. Compared with
the purely bioinspired and more complex scheme introduced in
previous studies,13−18 no delay matching is necessary between
the pre- and postsynaptic spikes; thus, this simplified STDP
learning rule (Figure 3c) should make driving circuitry
considerably easier to design. Moreover, a peripheral driving
circuitry that is equal to those of 3T-Synpase can also be
implemented by CNT transistor technology, enabling a
considerably easier fabrication process for high-density
integration.
In the following, we present the synaptic learning rule from

3T-Synapse. First, complementary n- and p-channel CNT
transistors were developed to implement the aforementioned
CMOS inverter circuit. In general, the CNT transistor shows
initial p-type behavior under ambient conditions; thus, the n-
type CNT transistor could be achieved by doping electron-
donating groups.36 Here, n-type doping was accomplished by
coating the prepared polyethylenimine (PEI) solution dissolved
in methanol (50 vol %) on a desired CNT network channel
(see the Methods section). With n-type doping, the channel
current at positive VGS values began to show a clear increase,
and the complete type conversion was achieved with a similar
on/off ratio as that of the initial p-channel CNT transistor
(Figure 4a). Such a conversion of CNT transistors by PEI
doping results from the shift of the Fermi level toward the
conduction band due to electron donation (see Supporting
Information Note 3 for a detailed explanation). The additional
Au layer as a floating gate was not embedded into the inverter,
i.e., both the n- and p-channel CNT transistors, for stable
inverter operation without significant hysteresis. In addition,
highly purified, preseparated, 99% semiconducting CNTs were
used for the formation of the CNT network channels, which
gave rise to uniformly distributed electrical performances, such
as the threshold voltage, on/off current ratio, and mobility

Figure 3. (a) Pulse timing for presynaptic spikes. Each pixel’s intensity is converted into the timing of Vpre. (b) Pulses for a simplified STDP
(voltage pulses as functions of time). The net applied voltage to the synaptic transistor (VG) is determined by the timing correlation between
Vpre and Vpost. The polarity of VG is determined by Δt (= tpost − tpre); VG is negative when Δt > 0 for potentiation and positive when Δt < 0 for
depression. (c) Developed simplified STDP rule compared with the standard biological STDP rule.
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(Supporting Information Note 1). As a result, the operation of
the complementary inverter was achieved by combining n- and
p-channel CNT transistors, as shown in Figure 4b. With Vr = 5
V, clear output on and off states were observed in which these
output characteristics were realized with a small leakage current
at the off state of n- and p-channel CNT transistors.
As discussed above, the inverter selects the signal VG applied

to the gate electrode of the CNT synaptic transistor according
to the timing correlation of the pre- and postsynaptic spikes;
accordingly, VG is either Vr, VLTP, or VLTD. When VG = Vr, Vr (=
5 V) is not sufficient to modulate the channel conductance of
the CNT synaptic transistor, it can generate a channel current
(i.e., postsynaptic current (Ipost)) depending on the channel
conductance. Therefore, when VG = Vr, only Ipost is generated
and accumulates due to the leaky integrator. Conversely, when
VG = VLTP or VLTD, the channel conductance of the CNT
synaptic transistor is modulated, and this modulation is caused
by the tunneling process of carriers into the specially embedded
Au floating gate (the Au layer is embedded only into the
synaptic transistor in three CNT transistors in 3T-Synapse).
We identified the analog channel conductance-switching

behavior in the CNT synaptic transistor. Figure 4c shows the
schematics of the pulse trains used for the measurement. Each
pulse train consists of 120 pulses (negative polarity pulse for
potentiation and positive polarity pulse for depression),
followed by nonperturbative read voltage pulses at 1 V within
the intervals. Although the synaptic update responses of
different devices were reasonably uniform, the weight updates
were highly nonlinear for both potentiation and depression, as
shown in Figure 4d. The change in the channel conductance
was more dramatic during the first few potentiation/depression
pulses and became saturated as the number of pulses increased.
Every training pulse resulted in a different response in the
weight update depending on the current weight state, and the
cumulative effect on the weight update does not follow a simple
linear relation, which is attributed to the nonlinearity (NL) of
the weight update. Here, NL and ΔG were defined
quantitatively as37

=
| − |

−
= −NL

G n G n

G G
n

max ( ) ( )

(120) (1)
for 1 120p d

p p

Figure 4. (a) Transfer characteristics for n- and p-channel CNT transistors for the inverter. (b) Voltage transfer curves of an inverter
consisting of CMOS CNT transistors showing a voltage gain of approximately 2.3 at an operating voltage (VDD) of 5 V. (c) Schematics of the
applied pulse trains used to measure the analog channel conductance modulation. Each pulse train consists of 120 potentiation or depression
pulses applied to the gate (VLTP and VLTD for 5 ms) followed by small, nonperturbative read voltage pulses (5 V for 100 ms) within the
intervals. Measured analog conductance-switching behaviors in three different cases: (d) Case 1: the amplitudes of VLTP and VLTP are greater
than other cases; thus, NL is the highest and ΔG is the largest. (e) Case 2: the amplitudes of VLTP and VLTP are smaller than in case 1; thus, NL
and ΔG are lower. (f) Case 3: if the CNT transistor without the Au floating gate is used for the synaptic transistor, NL and ΔG are
considerably smaller than in the other cases due to the limited charge storage space.
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Δ = −G G G G( (120) (1))/ (1)p p p

where Gp(n) and Gd(n) are the conductance values after the nth
potentiation pulse and nth depression pulse, respectively. NL
should be zero for a completely linear update. Interestingly, in
the case of the proposed CNT synaptic transistor with a thin
Au layer (floating gate), the channel conductance is modulated
depending on the number of trapped charges at the Au floating
gate, which can be adjusted by designing the amplitude and
time of the gate voltage pulse; thus, the weight update
nonlinearity (NL) and total variation margin (ΔG) are
controllable. In our measurement, when VLTP and VLTD were
−8 V and +8 V, respectively, with a fixed pulse width (5 ms),
NL and ΔG were quite high (NL = 0.82, ΔG = 47.0), as shown
in Figure 4d (case 1). These high NL and ΔG values are due to
the abrupt carrier injection into the Au floating gate.
Furthermore, when the amplitudes of VLTP and VLTD are
reduced (Figure 4e, case 2), the conductance change becomes
more gradual due to the alleviation of the carrier injection
process, which enables smaller NL and ΔG values. Moreover,
the CNT synaptic transistor without the Au floating gate
provides the smallest NL and ΔG values (Figure 4f, case 3).
Interestingly, compared with more complex schemes intro-
duced in previous studies for two-terminal resistive switches
(i.e., nonidentical training pulses with a state-dependent pulse
width and the amplitude have been required to control the
weight update behavior, NL and ΔG),21 with the thin Au layer
in our CNT synaptic transistors, NL and ΔG can be easily
controlled by simply adjusting the amplitude of the pulse,
which will decrease the complexity of the peripheral circuit
designs.
However, although NL and ΔG can be adjusted as desired, it

is unclear what NL and ΔG values are appropriate for the
reliable operation of a neuromorphic system. In other words, an
investigation on the impact of high/low NL and ΔG is

necessary, as is particularly evident when investigating the effect
on the pattern recognition accuracy. In recent pattern
recognition studies based on implemented synaptic device
arrays,21−23,38 high NL has been shown to degrade the
recognition accuracy. Nevertheless, no study has performed a
quantitative analysis on how a correlated NL and ΔG affect the
accuracy. Therefore, in the following, we represent a device- to
system-level simulation by using the implemented simplified
STDP scheme and demonstrate how different NL and ΔG
values affect the learning and recognition process. The detailed
simulation procedure, parameters, and model used in this study
are described in Supporting Information Note 4.28 Briefly, to
demonstrate pattern recognition in a CNT synaptic transistor
array, we use the widely studied case of handwritten number
recognition using the MNIST database, which consists of
handwritten numbers that are 28 × 28 pixels.39 We input the
full MNIST training database, which consists of 60,000 digits,
into the system to guide the learning process. Each input
neuron is connected with one pixel of the image; thus, a total of
28 × 28 input neurons emit presynaptic spikes such that their
timings are proportional to the pixel intensity. Input
presynaptic spikes generate postsynaptic currents based on
the synaptic weight of each synaptic transistor and are
integrated by the output neurons. Then, the one output
neuron whose integrated postsynaptic current is the highest
fires postsynaptic spikes; correlated pre- and postsynaptic
spikes result in channel-conductance potentiation or depression
(i.e., the learning phase). After completing the learning process,
the network is tested on the MNIST test database, which
consists of 10,000 digits that were not available during training
(i.e., the recognition phase).
Figure 5a shows the final simulated conductance states of the

CNT synaptic transistors connecting the input neurons to each
of the output neurons. The synaptic weights that were
randomly initialized eventually learned to encode the input

Figure 5. (a) Rearranged weights (from 784 to 28 × 28) of the connections from the input to output neurons for a network with 80 output
neurons. (b) Performance as a function of the number of output neurons. Each dot shows the recognition rate for a certain network size as an
average over 10 digits of the entire MNIST test set. (c) Average confusion matrix of the testing results over 10 digits of the 10,000 MNIST test
set. High values along the identity indicate correct identification, whereas high values anywhere else indicate confusion between two digits, for
example, the digits 4 and 9.

ACS Nano Article

DOI: 10.1021/acsnano.6b07894
ACS Nano XXXX, XXX, XXX−XXX

F

http://pubs.acs.org/doi/suppl/10.1021/acsnano.6b07894/suppl_file/nn6b07894_si_001.pdf
http://dx.doi.org/10.1021/acsnano.6b07894


patterns. Figure 5b shows the recognition rate for the test data
set as a function of the number of output neurons (N) and that
the classification accuracy (i.e., recognition rate) can be
improved by increasing the number of output neurons (N);
with 80 output neurons, the recognition rate reaches 60−70%.
Additionally, Figure 5c shows the detail of the misclassification
in three different cases; it is the average confusion matrix over
10 digits of the MNIST test set, i.e., every single classification of
the test inputs belongs to one of the 10 × 10 tiles, and its
position is determined by the actual digit and inferred digit.
Given a recognition rate of approximately 70% in case 1, the
majority of the inputs are on the identity that corresponds to
correct classification. Conversely, more misclassifications
occurred in case 3 given the lower recognition rate, where
the most common confusions were that 4 was identified as 9, 5
was identified as 8, and 9 was identified as 4. Interestingly, case
1 (NL is the highest and ΔG is the largest) always exhibits a
better recognition rate than the other cases regardless of the
number of output neurons, as shown in Figure 5b. This result is
distinctive from the results of previous studies,21−23,38 in which
a smaller NL could improve the accuracy. In contrast, in our
simulation results, a larger ΔG rather than a smaller NL is the
determining factor to improve the recognition accuracy.
To understand the nature of the recognition accuracy

affected by NL and ΔG, we re-investigate the influence of NL
and ΔG on the recognition rate according to the number in the
learning phase. Figure 6 shows the simulation results with

different cases and shows again that the recognition rate is
significantly affected by ΔG regardless of the number in the
learning phase and the number of output neurons; as noted
above, a larger ΔG instead of a smaller NL produces a better
recognition rate. Although a rapid and unstable evolution of the
recognition rate was obtained when N = 10 (depicted by the
filled circles) compared with N = 80, the tendency of the
recognition rate is predominately determined by ΔG instead of
NL. This opposite result compared to previous studies is caused
by the fact that the conductance variation margin of common
synaptic devices based on two-terminal resistive switches is
below 10 (i.e., ΔG < 10).21−23,38 With this small ΔG value, NL
was the sole controlling factor; thus, previous studies have
concluded that a smaller NL produces a better recognition rate.
In contrast, in our CNT synaptic transistors, ΔG is 57.5 in case
1, and it can be further enhanced by increasing the amplitude of
VLTP or VLTD. This larger ΔG provides more analog
conductance states to store information on the input pattern
to be more clearly distinguished, which leads to a better
distinction between the previously learned pattern and other
test patterns. Although a smaller NL can improve the

recognition rate under a fixed ΔG, a larger ΔG is the more
dominant factor in the pattern recognition procedure. There-
fore, when improving the pattern recognition accuracy in a
neuromorphic system, the larger variation margin of the weight
states is more important than the linearity of weight update;
this conclusion has not been drawn in previous studies.

CONCLUSION
In summary, we have experimentally demonstrated a synaptic
device based on three CNT transistors (3T-Synapse)
constructed from highly purified 99% semiconducting CNT
solutions with reliable, analog, conductance-modulated behav-
ior. Specifically, the embedded Au floating gate of the CNT
synaptic transistor enables the synaptic-weight plasticity to be
encoded by adjusting the amount of carrier injection, which is
simpler and more accurate than previous approaches based on
two-terminal resistive switches. We fabricated the CNT
synaptic transistors on a paper substrate, demonstrating the
feasibility of a flexible, inexpensive, lightweight, disposable, and
recyclable neuromorphic system. In addition, the developed
complementary n- and p-channel CNT transistors provide the
CMOS inverter circuit, which emulates the simplified STDP
mechanism from the timing correlation between the pre- and
postsynaptic spikes. Additionally, a simplified STDP scheme
was used to simulate the pattern recognition task at a system
level, where the 3T-Synapses associated with peripheral neuron
circuits could perform unsupervised learning. The larger margin
of conductance modulation in the CNT synaptic transistor
enables a better recognition accuracy; this simulation result is
an important step toward effective analog hardware imple-
mentation for more complex neuromorphic systems.
Although the proposed 3T-Synapse, which is based on highly

purified, preseparated 99% semiconducting CNTs, requires
greater energy consumption to change the analog conductance
states than previous two-terminal resistive switches or existing
silicon-based floating gate memory, the existing two-terminal
resistive switches and silicon-based technology are now facing
reliability issues and the physical limit of device scaling,
respectively. On the other hand, the CNT has been regarded as
the next-generation material with excellent material properties
for high-performance, low-power electronics; hence, the CNT-
based synaptic device has been reported by other groups,24−27

including our previous work.28 In this work, we employed the
highly purified, preseparated 99% semiconducting enriched
CNTs-based synaptic transistor with excellent electrical
performance, in particular, high on/off current ratio resulting
in the large analog conductance changes. In addition, a
peripheral driving circuitry (neuronal circuit) as well as synaptic
devices can also be monolithically implemented using the
equivalent CNT transistor technology, which enables a
considerably easier fabrication process with low cost.
Importantly, the integration to three-dimensionally stacked
high-density array might be much easier than silicon-based
conventional floating gate memory;40 it will be an important
merit toward the effective analogue hardware implementation
of more complex neuromorphic networks.

METHODS
Fabrication of CNT Transistors and Transfer to the Paper

Substrate. To transfer the device onto the paper substrate, CNT
transistors were initially fabricated on highly p-doped rigid silicon
substrates with a thermally grown 50 nm-thick SiO2 layer. First, the
copper (Cu) (300 nm) and SiOx (300 nm) layers were sequentially

Figure 6. Recognition rate as a function of the number of learning
phases.

ACS Nano Article

DOI: 10.1021/acsnano.6b07894
ACS Nano XXXX, XXX, XXX−XXX

G

http://dx.doi.org/10.1021/acsnano.6b07894


deposited on the substrate using evaporation and a plasma-enhanced
chemical vapor deposition process, respectively. The layers served as a
sacrificial layer to detach the CNT transistors from the rigid donor
substrate using a water-assisted transfer technique.36 We used the local
back-gate structure for efficient local modulation of the channels in the
CNT transistors. To form the local back-gate, the palladium (Pd) layer
was first deposited and subsequently patterned using evaporation and
a lift-off process, respectively. Next, a 50 nm-thick SiOx layer, 10 nm-
thick Au layer, and 20 nm-thick SiOx layer were deposited sequentially.
The thin Au layer served as a floating gate for charge storage. Then,
the top surface of the SiOx layer was functionalized with a 0.1 g/mL
poly-L-lysine solution to form an amineterminated layer, which acted
as an effective adhesion layer for the deposition of the CNTs.
Subsequently, the CNT network channel was formed by immersing
the chip into a 0.01 mg/mL 99% semiconducting CNT solution
(NanoIntegris, Inc.) for several hours, followed by a thorough rinse
with isopropanol and DI water. Subsequently, the source/drain
electrodes consisting of Ti and Pd layers (each 2 and 40 nm,
respectively) were deposited and patterned using conventional thermal
evaporation and a lift-off process, respectively. Finally, additional
photolithography and oxygen plasma steps were conducted to remove
unwanted electrical paths, which isolated the devices from one
another.
We used the water-assisted transfer printing technique to transfer

the fabricated CNT transistors on the rigid substrate to the paper
substrate. First, a thermal release tape (TRT) was attached to the
fabricated CNT transistors as a temporary holder. Next, the entire
structure was soaked in deionized water at room temperature, and an
edge of the TRT was peeled off to initiate water penetration. Within
several minutes, the entire structure was detached from the donor
substrate. A Cu etchant (FeCl3) was then used to eliminate the Cu
layer on the backside of the detached substrate. At the end of the
process, the TRT holding the structure was pasted onto the photo
paper without any surface treatment of the paper surface.
Electron Doping for the n-Channel CNT Transistor.We used a

branched PEI polymer (average MW: 800, Sigma-Aldrich) to produce
n-channel transistors. First, a typical branched PEI polymer with the
chemical formula H(NHCH2CH2)nNH2 was dissolved in methanol
(50 vol %) and then spin-coated on the top surface of the devices
using low-rpm spin-coating. Next, the baking process was performed at
65 °C to evaporate the methanol. Finally, the remaining PEI on the
CNTs was removed by rinsing again with methanol. The PEI was
irreversibly adsorbed on the CNT network via thorough rinsing with a
solvent (methanol). A relatively high concentration of PEI (50 vol %)
was selected due to the high n-channel current. All experiments were
conducted under ambient conditions.
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